Peptide Mapping Demo Workflows

Biologics Explorer Software Guidelines

Powered by Genedata Expressionist[®]

Peptide Mapping Demo Workflows

CONTENTS OF THIS GUIDE

A: Overview of the Peptide Mapping Demo Workflows

- 1. Overview of the Applications for Peptide Mapping Demo Workflows
- 2. Overview of the Peptide Mapping Demo Workflows

B: Information about the Peptide Mapping Demo Workflows

- 1. Simple Peptide Mapping
- 2. Extended Characterization
- 3. Sequence Variant Search
- 4. Comparative Analysis
- 5. Review Snapshots
- 6. Batch Processing

Part A Overview of the Peptide Mapping Demo Workflows

Overview of the Applications for Peptide Mapping Demo Workflows

- The Peptide Mapping demo workflows contain examples of how to analyze enzymatically digested biotherapeutic molecules, and include:
 - Sequence coverage and confirmation
 - Glycopeptide analysis
 - Post-translational modification (PTM) analysis
 - Disulfide-bond (DSB) analysis
 - Sequence variant analysis (SVA)
- The Pepmap demo workflows **_Simple**, **_Extended**, **_Comparative** and **_SVA** create common peak boundaries across all replicate samples.
- The Pepmap demo workflow _BatchProcessing analyses different molecules as individual replicates with no shared peak boundaries.

Overview of the Peptide Mapping Demo Workflows

Pepmap_Simple_Demo:

 A Peptide Mapping workflow for routine characterization, with identification and quantification of common modifications and glycosylations.

Pepmap_Extended_Demo:

 A Peptide Mapping workflow that has more search nodes to maximize sequence coverage and identification of less common modifications.

Pepmap_SVA_Demo:

• A version of the Pepmap_Extended workflow that has more search nodes for identification of potential sequence variants.

Pepmap_Comparative_Demo:

 A version of the Pepmap_Extended workflow that has activity nodes to complete a statistical comparison between sample sets.

Pepmap_ReviewSnapshots_Demo:

• A workflow to open or review saved results.

Pepmap_BatchProcessing_Demo :

• A version of the Pepmap_Extended workflow that analyzes each multiple data files, one sample at a time.

Part B Information About Peptide Mapping Demo Workflows

Simple Peptide Mapping Demo Workflow Information B1

Overview and Application: Pepmap_Simple_Demo

- This workflow uses data that was acquired with CID fragmentation for a routine analysis of a non-complex biotherapeutic molecule.
- The search parameters in the *Peptide Mapping* activity node are optimized to identify peptides, common post-translational modifications, and glycosylation.
- For more information about how to use Biologics Explorer software, refer to the *Biologics Explorer Quick Guide* and *Peptide Mapping Template Workflow Guidelines*.

Extended Characterization Demo Workflow Information **B2**

Overview and Application: Pepmap_Extended_Demo

- This workflow uses data that was acquired with EAD fragmentation for a comprehensive Peptide Mapping analysis of three replicates of a biotherapeutic molecule.
- The search parameters in the two *Peptide Mapping* activity nodes are optimized to extend the search space and increase identifications, but keep false positives to a minimum.
- For more information about how to use Biologics Explorer software, refer to the *Biologics Explorer Quick Guide* and *Peptide Mapping Template Workflow Guidelines*.

B2: EXTENDED PEPTIDE MAPPING DEMO WORKFLOW

Stepwise Peptide Mapping

 This workflow uses up to three consecutive search nodes to extend the search space but minimize false positives:

Peptide Mapping 1

Identifies the most likely peptides and modifications.

Peptide Mapping 2

- Identifies less common modifications.
- Ignore Annotated Features: Makes sure that only unannotated features from the previous search are considered.

Wildcard Mapping

- Identifies unexpected modifications.
 - Deactivate the **Bypass** icon to use *Wildcard Mapping*.
 - Add identified modifications to a *Peptide Mapping* activity node.
 - Activate the **Bypass** icon when *Wildcard Mapping* is not required.

General Sequence	Modifications G	ycosylation	Crosslinks
Mass Tolerance: 8	ppm \sim		
MS/MS Identifica	ation		
Instrument:	EAD	\sim	
m/z Tolerance:	50 ppm \sim]	
Min. Score:	70		
Keep:	Top Ranked		\sim
Mass-only Matches:	Discard all		\sim
Ignore Annotated	d Features		
Export Coverage	Data (deprecated)		

Sequence Variant Search Demo Workflow Information **B3**

B3: SEQUENCE VARIANT ANALYSIS DEMO WORKFLOW

Overview and Application: Pepmap_SVA_Demo

- This workflow is optimized to identify potential sequence variants.
 - Note: High quality MS and MS/MS data is required for confident identification of sequence variants. Instrument acquisition should be optimized for SVA.
- Two consecutive *Peptide Mapping* activity nodes identify the non-variant peptides and remove them from the search space.
- The *Peptide Mapping with SVA* activity node searches for sequence variants.
- Possible SVA identifications can be compared with the results from the *Wildcard Mapping* activity node for verification.
- For more information about how to use Biologics Explorer software, refer to the *Biologics Explorer Quick Guide* and *Peptide Mapping Template Workflow Guidelines*.

B3: SEQUENCE VARIANT ANALYSIS DEMO WORKFLOW

SVA Identification Strategy

To detect potential sequence variants:

- 1. Use *Peptide Mapping 1* and *Peptide Mapping 2* to complete a typical analysis for non-variant peptides.
 - Refine the *Peptide Mapping* settings for the molecule under investigation.
 - Note: For more information about stepwise Peptide Mapping, refer to the section: **B**: 2.Extended Peptide Mapping Demo Workflow.
 - Identified peptides are removed from the search space, which decreases false positives in Stage 3.
- 2. Complete an initial review of the data.
 - Click the Save icon, and then click Save and Reload.
 - Features from the rejected annotations are searched again with the *Peptide Mapping with SVA* activity node.

- 3. Deactivate the **Pause** icons on the *Peptide Mapping with SVA* and *Wildcard Mapping* activity nodes, and then click the **Play** icon to run them.
 - To increase the number of possible identifications, decrease the Min. Score in Peptide Mapping with SVA and Wildcard Mapping. A lower Min. Score increases the false positives for review. Manually review identifications that are close to the Min. Score threshold to reject incorrect annotations
- 4. Compare identifications in *Peptide Mapping with SVA* and *Wildcard Mapping*.
- 5. Review, and then Accept and Reject entries in the Peptide Table as required.

Comparative Analysis Demo Workflow Information **B4**

Overview and Application: Pepmap_Comparative_Demo

- This workflow compares data from a reduced and nonreduced biotherapeutic molecule to identify crosslinkers.
- The search parameters in the two *Peptide Mapping* activity nodes are optimized to identify reduced and nonreduced peptides with PTMs and glycosylation.
- The Automatic Review activity node adds a flag to unexpected crosslinked peptides.
- The *Differential Analysis [Container]* prepares the data for comparisons to be made.
- For more information about how to use Biologics Explorer software, refer to the *Biologics Explorer Quick Guide* and *Peptide Mapping Template Workflow Guidelines*.

Differential Analysis

The statistical activity nodes identify features that are different between the two sample groups that are compared in the workflow.

- The activity nodes connected with green lines contain statistical tools that can be used to compare two datasets.
- The workflow reports:
 - The relative (%) abundance of peptides in each dataset.
 - The peptides that are absent in one sample set, but present in the other.
 - The peptides that have a specified fold-change difference between sample sets.

Review Snapshots Demo Workflow Information **B5**

Overview and Application: Pepmap_ReviewSnapshots_Demo

- This workflow uses saved Snapshots to show results that have peptide annotations.
- For more information about how to use Biologics Explorer software, refer to the *Biologics Explorer Quick Guide* and *Peptide Mapping Template Workflow Guidelines*.

Review Saved Results

¹ ά Ρ	roteins X					
T	🝸 🔍 📼 R	eview 🗸	\times 🛛 \sim	~ 🏉 🔳	I	
✓×	Range	Peak Id	Protein Name	Disulfide Bonds	Modifications	Glycosylation
~	1 Full Range 1	672	LC	2*S-S		
~	2 Full Range 1	1832	LC-LC	5*S-S		
×	3 Full Range 2	1706	HC	5*S-S	Gln->pyro-Glu + Lys-loss	
~	4 Full Range 2	4198	HC-HC-LC-LC	16*S-S	2*Gln->pyro-Glu + 2*Lys-loss	GOF + GOF-GlcNA
~	5 Full Range 2	4199	HC-HC-LC-LC	16*S-S	2*Gln->pyro-Glu + 2*Lys-loss	2*G0F
~	6 Full Range 2	4200	HC-HC-LC-LC	16*S-S	2*Gln->pyro-Glu + 2*Lys-loss	G0F + G1F
×	7 Full Range 2	4201	HC-HC-LC-LC	16*S-S	2*Gln->pyro-Glu + 2*Lys-loss	G0F + G2F
~	8 Full Range 2	4201	HC-HC-LC-LC	16*S-S	2*Gln->pyro-Glu + 2*Lys-loss	2*G1F
~	9 Full Range 2	4202	HC-HC-LC-LC	16*S-S	2*Gln->pyro-Glu + 2*Lys-loss	G1F + G2F
1	10 Full Range 2	4203	HC-HC-LC-LC	16*S-S	2*Gln->pyro-Glu + 2*1 ys-loss	2*G2E

- The *Review Results* activity node opens a copy of the previous analysis.
 - Any previously accepted or rejected peptides have the applicable entry in the **Flags** column.
 - Another stage of review is then possible.
 - The reviewed sbf files and a new report can be saved.

.

Peptide Mapping Batch Processing Demo Workflow Information **B6**

Overview and Application: Pepmap_BatchProcessing_Demo

- This workflow uses sequence information from metadata that was imported into the workflow to analyze multiple samples independently.
- For more information about how to use Biologics Explorer software, refer to the *Biologics Explorer Quick Guide* and *Peptide Mapping Template Workflow Guidelines*.

B6: PEPTIDE MAPPING BATCH PROCESSING DEMO WORKFLOW

How to Use the Batch Processing Workflow

Use this workflow to analyze multiple samples independently.

- The samples do not require consistent chromatography.
- The samples can have different protein sequences.

All samples and their associated metadata are analyzed in the *Batch Iterative Processing* container.

- Intermediate results for each sample are not saved when the *Batch Iterative Processing* container is used for data analysis.
- To optimize workflow parameters, deactivate the **Trash** icon for activity nodes in the *Batch Iterative Processing* container, and use a single representative sample.
- To save memory when large numbers of samples are analyzed, activate the **Trash** icon for activity nodes in the *Batch Iterative Processing* container.

Load Raw Data: Experiment Names and Metadata

- L. Select Use File Name as Sample Name in Load Raw Data.
- 2. Use the **File Name** (name of the wiff or wiff2 container file) in the **Experiment** column of the txt file for *Metadata Import*.
- To analyze multiple samples from a single acquisition file:
 - 1. <u>Do not</u> select Use File Name as Sample Name in Load Raw Data.
 - 2. Use the **Sample Name** in the **Experiment** column of the txt file for *Metadata Import*.

(a) Load Raw Data - Settings				
General Adv	vanced Display			
Name:	Batch Processing			
Format:	SCIEX WiffTwo (*.wiff2)	~		
	Use File Name as Sample Name			
	Enable Numbering of Samples			
	Inable Raw Data Parsing			

🛅 Shared/Raw_Data/Pepmap	_raw/CID	
Name		
脑 NIST mAb digest IDA EB	103 100ng on column R01.wiff2	File name
🛅 Shared/Raw_Data/Pepmap_raw/CID	NIST mAb digest IDA EB03 100ng on	column R01.wiff2 🗸
Name		
Peptide mapping CE_4 R01 [1]		
Peptide mapping CE_6 R01 [2]	*	
Peptide mapping CE_5 R01 [3]	Sample names	5
Peptide mapping CE_7 R01 [4]	'	
Peptide mapping CE_8 R01 [5]		

Þ,

۵,

Metadata Import

Metadata Import

- To analyze multiple samples with the <u>same sequence</u>:
 - Deactivate the **Trash** icon, and then activate the **Bypass** icon for *Metadata Import*.
 - On the Sequences tab in *Peptide Mapping*, select From Text or From Fasta File.
- To analyze multiple samples with <u>different sequences</u>:
 - Use *Metadata Import* to select the FASTA file (protein sequence) that will be used for identification in the *Peptide Mapping* activity nodes.
- Upload a txt file with *Metadata Import* that links each sample to the correct FASTA file.
 - The name in the **Experiment** column must be the same as in the **Experiment** table in *Load Raw Data*.
 - The name in the Fasta File column must be the same as the name of the FASTA file that is in the specified Fasta
 File Directory, including the file extension (fasta or txt).

	А	В			1
1	Experiment	Fasta File	Sequence(s):	From Metadata: Fasta File, Sequence IDs (optional) ~	Name
2	20210203 Adalimumab tryptic 2ug ECD_1	Adalimumab.fasta		Define Fasta File Directory	🖹 Adalimumab.fasta
3	20210130 Herceptin IDA ECD Most intense _1	Herceptin.fasta		Directory Cfacto	🕅 Herceptin.fasta
4	20210130 Rituximab IDA ECD Most intense _1	Rituximab.fasta			🕅 NIST.fasta
5	20210901_NISTmAb_TimeCourse_Control_4ul_EAD_1	NIST.fasta			🖹 Rituximab.fasta

Metadata Import: How to Create the Metadata File

Note: Any metadata added in the *Load Raw Data* **Metadata Editor** table must be completed for all rows (all samples).

Experiment		Fasta File
20210203 Adalimumab tryptic 2ug ECD_1	(•)	Adalimumab.fasta
20210130 Herceptin IDA ECD Most intense _1		Herceptin.fasta
20210130 Rituximab IDA ECD Most intense _1		Rituximab.fasta
20210901 NISTmAb TimeCourse Control 4ul	EAD 1	NIST.fasta

- To create the metadata file in Excel or Notepad:
 - 1. Select the samples for batch processing in *Load Raw Data*.
 - 2. Open the **Metadata Editor** table.
 - 3. Select all of the entries in the **Metadata Editor** table, and then select copy.
 - 4. Paste the entries into the **Experiment** column of the metadata txt file.
 - 5. Delete ".wiff" or ".wiff2" from the end of each name. (Tip: Use the Replace command in Excel or Notepad.)
 - 6. Type the applicable FASTA file name in each row in the **Fasta File** column.
 - 7. Save the file in txt format, and then upload the file in the *Metadata Import* activity node.

Restrict the RT Range

- Use the Load Representative Raw Data activity node to review a small number of representative samples outside of the Batch Iterative Processing container.
 - To identify the RT ranges where there is meaningful data, open (double-click) Load Representative Raw Data after the data is loaded.

 \times

Apply

• If the RT ranges are consistent across all samples, then deactivate the **Bypass** icon and enter **RT Minimum** and **RT Maximum** values in the *RT Range Restriction* activity node in the *Batch Iterative Processing* container.

Cancel

Batch Iterative Processing

Metadata Import
RT Minimum: 5 Minutes
RT Maximum: 55 Minutes

 \bigcirc

RT Range Restriction - Settings

Load Raw Data

RT Range Restriction

B,

<u>ک</u>

Note: If the fields are blank, or if *RT Range Restriction* has the **Bypass** icon activated, then the full RT range is used.

Batch Iterative Processing Container

- The *Batch Iterative Processing* container is not the same as other Biologics Explorer software containers.
 - Only intermediate results from the last sample to be processed can be opened from the activity nodes in the *Batch Iterative Processing* container.

Note: If activity nodes in the container have the **Bypass** icon activated, then the container shows a yellow warning symbol.

• Do not activate the **Trash** icon for activities that are used in the PDF Report.

 Activity nodes in the Batch Iterative Processing container do not have a Run or Reset icon.

- Activity nodes in the *Batch Iterative Processing* container cannot be run individually.
 - To use a Save Snapshot or Export activity node in the Batch Iterative Processing container, deactivate the Block icon before the workflow is started.

Peptide Mapping: Sequences

Peptide Mapping 1 - S	Settings		×		
Conjugates P	eptide Chromatograms	Display			
General Sequence	Modifications	Modifications Glycosylation Cross			
Sequence(s):	From Text From Text From Fasta File From Protein Configu From Global File From Metadata: Fast From Metadata: Sequ	ration File a File, Sequence I Jence IDs	∼ Ds (option;		
Enzymes:	Trypsin		+		
Max. Missed Cleavages:	4				
Min. Peptide Length:	5				
0 1	ОК	Cancel	Apply		

Sequence tab:

- Sequence(s):
 - If all samples have the <u>same sequence</u>, then select From Text and type the sequence, or From Fasta File and select the applicable file.
 - If different samples require <u>different sequences</u>, then select From Metadata:
 Fasta File, Sequence IDs (optional), and then browse to the location of the folder that contains all of the applicable FASTA files.

Sequence(s):	From Metadata: Fasta File, Sequence IDs (optional) $$
	Define Fasta File Directory
	Directory: 🖻 fasta

• For more information, refer to the next page: *Review Results*: Protein Name in FASTA Files.

• Enzymes:

 Adjust enzyme specificity, maximum number of missed cleavages, and minimum peptide length as required.

Review Results: Protein Name in FASTA Files

If the protein sequence names <u>are unique</u> across the FASTA files used for identification:

Adalimumab.fasta - Notepad
<u>File Edit Format Vie</u> w Help
>HC(Adalimumab)
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTI:
>LC(Adalimumab)
DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDI
🗐 *Trastuzumab.fasta - Notepad
<u>File Edit Format Vie</u> w Help
>HC(Trastuzumab)
<pre>EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTI</pre>
>IC(Trastuzumab)
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSRSGTDF

The protein sequence name in *Review Results* is the same as the name in the FASTA file.

Note: If the names are too long, then some table columns in the PDF report might be missing.

 If the protein sequence names <u>are not unique</u> across the FASTA files used for identification:

The protein sequence name in *Review Results* includes the FASTA file name.

Trademarks/Licensing

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to <u>www.sciex.com/diagnostics</u>. All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries (see www.sciex.com/trademarks). © 2024 DH Tech. Dev. Pte. Ltd. TPUB-CUST-16030-A

The power of precision

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to <u>www.sciex.com/diagnostics</u>. All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries (see www.sciex.com/trademarks).

© 2024 DH Tech. Dev. Pte. Ltd. TPUB-CUST-16030-A